UNIVERSITY OF KENTUCKY
APPLICATION FOR NEW COURSE

1. Submitted by College of Medicine ___________________________ Date February 26, 2002

Department/Division offering course School of Public Health ___________________________

2. Proposed designation and Bulletin description of this course

 a. Prefix and Number SPH 632
 b. Title* Mixed Models in Public Health
 *NOTE: If the title is longer than 24 characters (including spaces), write
 A sensible title (not exceeding 24 characters) for use on transcripts Mixed Models
 c. Lecture/Discussion hours per week 2
 d. Laboratory hours per week 2
 e. Studio hours per week 0
 f. Credits 3
 g. Course description
 Students will learn statistical techniques for analyzing those longitudinal studies in public health that involve repeated
 measures and random effects. This course will cover multilevel regression models, Poisson regression models, logistic
 Models with random effects, crossover experiments, and nonlinear pharmacokinetic models.
 h. Prerequisites (if any)
 SPH 630 or STA 580 or equivalent
 i. May be repeated to a maximum of N/A (if applicable)

4. To be cross-listed as

 Prefix and Number ___________________________ Signature, Chairman, cross-listing department

5. Effective Date Fall 2003 (semester and year)

6. Course to be offered ☑ Fall ☑ Spring ☐ Summer

7. Will the course be offered each year? (Explain if not annually)
 ☑ Yes ☐ No

8. Why is this course needed?

 This is one of four selective courses in the Biostatistics track of the MPH degree program. Students must complete three of
 the selectives. This selective concerns mixed models which are now the accepted method for analyzing responses from
 longitudinal studies in public health.

9. a. By whom will the course be taught? Richard Kryscio, Ziyad Mahfoud

 b. Are facilities for teaching the course now available?
 If not, what plans have been made for providing them?
 ☑ Yes ☐ No
APPLICATION FOR NEW COURSE

10. What enrollment may be reasonably anticipated? 25

11. Will this course serve students in the Department primarily?
 □ Yes □ No

 Will it be of service to a significant number of students outside the Department?
 □ Yes □ No

 Although primarily serving SPH students, some students in Medicine, Pharmacy, Agriculture, and Statistics might enroll in this course.

 Will the course serve as a University Studies Program course?
 □ Yes □ No

 If yes, under what Area?

12. Check the category most applicable to this course

 □ traditional; offered in corresponding departments elsewhere;
 ☒ relatively new, now being widely established
 □ not yet to be found in many (or any) other universities

13. Is this course part of a proposed new program?
 If yes, which?
 □ Yes ☒ No

14. Will adding this course change the degree requirements in one or more programs?*
 If yes, explain the change(s) below

 This course is needed to meet the existing requirements of the Biostatistics track of the MPH degree program.

15. Attach a list of the major teaching objectives of the proposed course and outline and/or reference list to be used.

16. If the course is a 100-200 level course, please submit evidence (e.g., correspondence) that the Community College System has been consulted.

17. Within the Department, who should be contacted for further information about the proposed course?
 Name Richard J. Kryscio Phone Extension 7-4064

*NOTE: Approval of this course will constitute approval of the program change unless other program modifications are proposed.
UNIVERSITY OF KENTUCKY
APPLICATION FOR NEW COURSE

Signatures of Approval:

____________________________ ______________________________
Department Chair Date

____________________________ ______________________________
Dean of the College Date

____________________________ ______________________________
*Undergraduate Council Date

____________________________ ______________________________
*University Studies Date

____________________________ ______________________________
*Graduate Council Date

____________________________ ______________________________
*Academic Council for the Medical Center Date

____________________________ ______________________________
*Senate Council (Chair) Date of Notice to University Senate

*If applicable, as provided by the Rules of the University Senate

ACTION OTHER THAN APPROVAL

Rev 11/98
Proposed Course: SPH 632 Mixed Models in Public Health

Prerequisite: SPH 630 or STA 570 or equivalent

Course Description:
Students will learn statistical techniques for analyzing those longitudinal studies in public health that involve repeated measures and random effects. This course will cover multilevel regression models, Poisson regression models, logistic models with random effects, crossover experiments, and nonlinear pharmacokinetic models.

Major Teaching Objectives:

1. Students will learn the basic components of statistical mixed models including fixed effects, random effects and their interactions with particular attention to models for repeated measures experiments and models for longitudinal data analysis.

2. Students will learn current mixed models for dependent variables with normal distributions, and other distributions from the exponential family including the binomial (logit), poisson, gamma, and ordered categorical.

3. Students will learn how random effects impact meta analysis studies and multicenter clinical trials.

4. Students will learn the role of mixed models in the following experiments frequently encountered in the medical sciences pharmacokinetic experiments and crossover trials.

5. Students will become familiar with statistical software to mixed models including Procedures Mixed, Gamma, Glimmix in the SAS system, and WinNumMix.

Course Topics:

1. Overview of Mixed Models and Applications
 Assessing patient effects in a medical experiment
 Using random effects
 Estimation (prediction) of random effects
 Baseline covariates

2. Normal Mixed Models
 Model fitting
 Bayesian approach
 Practical applications and interpretations
 Negative variance components

3. Generalized Linear Mixed Models
 Definitive: specifying random effects and link functions
 Examples of applications in medicine
 Binary and Poisson data

4. Mixed Models for Categorical Data
 Ordinal logistic and mixed models
 Unordered categorical data
 Practical applications

5. Multicenter Clinical Trials and Meta Analysis
 Center and center by treatment interactions
 Meta analysis using random effects
 Practical applications

6. Repeated Measures Data
 Covariance pattern models for normal data
 Covariance pattern models for count data
 Random coefficient models
 Sample size estimation
7. Crossover Trials
 - Advantages of mixed models in crossover experiments
 - Two period, two treatment designs
 - Higher order Designs
 - Binary and categorized responses

8. Nonlinear Mixed Models Applications
 - Pharmacokinetic (PK) models
 - Pharmacodynamic (PD) models
 - Selecting PK/PD links
 - Specifying mixed effects, error structures, and model parameters

References:

* denotes likely text

Course Grading Criteria:
Grades will be based on two exams (midterm and final) and a lab grade, all equally weighted. Weekly
lab assignments will emphasize computations, and use of technical software for this purpose. The
midterm exam will cover concepts and interpretation for the items listed under topics 1-4 above, while
the final exam will do the same for the items listed under topics 5-8.

Course Instructors:
Richard Kryscio, Ziyad Mahfoud