Cardiorespiratory Fitness Is Associated with Executive Function in Older Adults

Zachary Johnson ${ }^{1}$ • Brian Gold, PhD ${ }^{2}$ • Alison Bailey, $\mathrm{MD}^{3} \bullet$ Jody Clasey, PhD^{4} • Doug Long ${ }^{5}$ • David Powell, PhD ${ }^{6}$ • 21a Nathan Johnson, PhD ${ }^{7}$
${ }^{1}$ College of Health Sciences, University of Kentucky • ${ }^{2}$ Anatomy and Neurobiology, Magnetic Imaging and Spectroscopy Center, Sanders Brown Center on Aging, University of Kentucky • ${ }^{3}$ Gill Heart Institute, University of Kentucky • ${ }^{4}$ Kinesiology and Health Promotion, Clinical Service Core, University of Kentucky • ${ }^{5}$ College of Health Sciences, Clinical Services Core, University of Kentucky • ${ }^{6}$ Anatomy and Neurobiology, Magnetic Imaging and Spectroscopy Center, University of Kentucky ${ }^{7}$ Rehabilitation Sciences, Division of Physical Therapy, University of Kentucky

Background: Growing evidence suggests that physical activity and exercise have protective effects on brain health and executive function. The purpose of this study was to determine the relationship between cardiorespiratory fitness and executive function in healthy older adults.

Hypothesis: Cardiorespiratory fitness is associated with executive function.

Methods: Forty-two cognitively healthy adults (mean age=63.38, SD=2.96) participated in this study. A physiciansupervised maximal graded exercise test was used to assess cardiorespiratory fitness, or peak VO2. Secondary criteria were used to determine participants that achieved peak VO2 while on the treadmill. Peak VO2 was achieved if at least two of the following criteria were met: 1) a heart rate greater than or equal to 90% of the age-predicted maximum (220-age), 2) a respiratory exchange ratio ≥ 1.1, and 3) a rating of perceived exertion \geq 17. A composite fitness score was generated using peak VO2 and total time on the treadmill. Briefly, all values were normalized and then summed to yield an index that ranged from 0 to 2 .

Higher values represent participants with higher peak VO2 values and longer exercise times. Executive function was assessed via the Trail Making Test (TMT; Trail A and Trail B). The difference in the time it takes to complete Trail A and B (Trail B - Trail A) was used as a measure of executive function.

Results: After controlling for age and sex, cardiorespiratory fitness showed a significant negative relationship with the difference between time to complete Trail A and Trail B ($p=0.038, r=$ -0.444).

Conclusion: Higher levels of cardiorespiratory fitness are associated with superior executive function. Our results build on previous findings that cardiorespiratory fitness helps to mitigate cognitive decline in older adults.

