Programing amylin secretion to slow AD

Han Ly ¹ • Nirmal Verma, PhD ¹ • Tammaryn Lashley, PhD ² • John Hardy ³ • Gopal Thinakaran ⁴

¹Pharmacology and Nutritional Sciences, University of Kentucky • ²Neurology • ³Molecular Biology of Neurological Disease, University College London • ⁴Neuroscience, University of Chicago

Mutations in A β and/or in proteins participating in the processing mechanisms were linked to the development of familial AD. Here, we showed that, in addition to A β pathology, brains of patients suffering with familial AD have large deposits of amylin, an amyloidogenic hormone co-secreted with insulin. Amylin forms neuritic deposits, co-localizes with A β as mixed A β -amylin plaques and also accumulates intracellularly in neurons. Ameliorating amylin dyshomeostasis in the periphery reduced AD in a preclinical model.